本文的閱讀等級:初級
考慮下面這個問題:設 $$A$$ 和 $$B$$ 為 $$n\times n$$ 階矩陣且 $$A+B$$ 是可逆的,證明
$$A(A+B)^{-1}B=B(A+B)^{-1}A$$
此題令人頭疼的地方在於 $$(A+B)^{-1}$$ 夾在兩個矩陣之間,要將它消去似乎不是一件容易的事。先檢查一下我們手邊的可用工具,矩陣運算遵守下列基本性質:
(1) 分配律 $$A(B+C)=AB+AC$$,$$(A+B)C=AC+BC$$
(2) 結合律 $$A(BC)=(AB)C$$
(3) 矩陣乘法交換律不總是成立,但若 $$A$$ 可逆,則存在 $$B$$ 使得 $$AB=BA=I$$,交換律成立。
理論上,運用這些性質便足以應付多數的問題,但我們也不諱言矩陣運算確實要善用一些技巧,複雜一點的問題更需要巧思和洞察力。